Query & search registries

Find & access data using registries.

Setup

!lamin init --storage ./mydata
Hide code cell output
💡 connected lamindb: testuser1/mydata
import lamindb as ln

ln.settings.verbosity = "info"
💡 connected lamindb: testuser1/mydata

We’ll need some toy data:

ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()
Hide code cell output
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'hSTxQZr1RHtYJ77NJCcg' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/hSTxQZr1RHtYJ77NJCcg.jpg'
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'U1pFlRHEfSBjlvgXDpoL' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/U1pFlRHEfSBjlvgXDpoL.parquet'
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'jUrjt0RxYplfAZIzvkfz' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/jUrjt0RxYplfAZIzvkfz.fastq.gz'
Artifact(uid='jUrjt0RxYplfAZIzvkfz', description='My fastq', suffix='.fastq.gz', size=20, hash='hi7ZmAzz8sfMd3vIQr-57Q', hash_type='md5', visibility=1, key_is_virtual=True, created_by_id=1, storage_id=1, updated_at='2024-05-29 07:53:24 UTC')

Look up metadata

For entities where we don’t store more than 100k records, a look up object can be a convenient way of selecting a record.

Consider the User registry:

users = ln.User.lookup(field="handle")

With auto-complete, we find a user:

user = users.testuser1
user
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at='2024-05-29 07:53:22 UTC')

Note

You can also auto-complete in a dictionary:

users_dict = ln.User.lookup().dict()

Filter by metadata

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 hSTxQZr1RHtYJ77NJCcg None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.562011+00:00
2 U1pFlRHEfSBjlvgXDpoL None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.715624+00:00
3 jUrjt0RxYplfAZIzvkfz None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.727283+00:00

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record stored as a row.

  • .all(): An indexable django QuerySet.

  • .list(): A list of records.

  • .one(): Exactly one record. Will raise an error if there is none.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for metadata

ln.Artifact.search("iris").df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
2 U1pFlRHEfSBjlvgXDpoL None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.715624+00:00

Let us create 500 notebook objects with fake titles and save them:

ln.save(
    [
        ln.Transform(name=title, type="notebook")
        for title in ln.core.datasets.fake_bio_notebook_titles(n=500)
    ]
)

We can now search for any combination of terms:

ln.Transform.search("intestine").df().head()
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
2 2WQewZEcxlKf None Enteric Nervous System Enteric nervous system ... None None notebook None None None None 1 2024-05-29 07:53:29.728935+00:00
26 D0ktAuYVRfCL None Grid Cells classify IgE Parafollicular cell Te... None None notebook None None None None 1 2024-05-29 07:53:29.732761+00:00
36 IqyQsx1Le9l2 None Taste Receptor Cells Parafollicular cell candi... None None notebook None None None None 1 2024-05-29 07:53:29.734324+00:00
46 y1qrZwTGBX3B None Rank investigate Taste receptor cells IgG1 int... None None notebook None None None None 1 2024-05-29 07:53:29.735906+00:00
48 vH9EM3yHIHqB None Intestine IgG3 IgG2 IgG1 rank study Grid cells. None None notebook None None None None 1 2024-05-29 07:53:29.736217+00:00

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations:

ln.Artifact.filter(run__created_by__handle__startswith="testuse").df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id

The filter selects all artifacts based on the users who ran the generating notebook.

(Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.)

Beyond __startswith, Django supports about two dozen field comparators field__comparator=value.

Here are some of them.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 hSTxQZr1RHtYJ77NJCcg None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.562011+00:00

less than/ greater than

Or subset to artifacts greater than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
2 U1pFlRHEfSBjlvgXDpoL None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.715624+00:00
3 jUrjt0RxYplfAZIzvkfz None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.727283+00:00

or

from django.db.models import Q

ln.Artifact.filter().filter(Q(suffix=".jpg") | Q(suffix=".fastq.gz")).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 hSTxQZr1RHtYJ77NJCcg None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.562011+00:00
3 jUrjt0RxYplfAZIzvkfz None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.727283+00:00

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 hSTxQZr1RHtYJ77NJCcg None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.562011+00:00
3 jUrjt0RxYplfAZIzvkfz None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.727283+00:00

order by

ln.Artifact.filter().order_by("-updated_at").df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
3 jUrjt0RxYplfAZIzvkfz None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.727283+00:00
2 U1pFlRHEfSBjlvgXDpoL None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.715624+00:00
1 hSTxQZr1RHtYJ77NJCcg None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-05-29 07:53:24.562011+00:00

contains

ln.Transform.filter(name__contains="search").df().head(10)
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
5 F2g3b8Xai9oV None Ige IgE Cajal–Retzius cells IgG4 IgG4 research. None None notebook None None None None 1 2024-05-29 07:53:29.729418+00:00
18 CyNYyGgPjtXn None Parafollicular Cell Natural killer cell IgA Ig... None None notebook None None None None 1 2024-05-29 07:53:29.731502+00:00
23 Ov4m4m0nCwT6 None Result Grid cells IgE research IgE classify. None None notebook None None None None 1 2024-05-29 07:53:29.732289+00:00
25 O6Gs0wM23YkQ None Igg3 IgG1 IgE research. None None notebook None None None None 1 2024-05-29 07:53:29.732604+00:00
30 hil7k7ZEf62R None Igd Adrenal glands cluster Veins IgG4 research... None None notebook None None None None 1 2024-05-29 07:53:29.733387+00:00
51 Cr1u3tN6V64p None Classify Cajal–Retzius cells IgG3 Cajal–Retziu... None None notebook None None None None 1 2024-05-29 07:53:29.736684+00:00
55 7AE7ck3Rzjgr None Intestine IgG4 IgA candidate research. None None notebook None None None None 1 2024-05-29 07:53:29.737308+00:00
83 dFLxqCpS9Gus None Investigate study classify research Natural ki... None None notebook None None None None 1 2024-05-29 07:53:29.744793+00:00
92 rLia6ZheHuOJ None Vestibule Of The Ear IgG4 efficiency IgY resea... None None notebook None None None None 1 2024-05-29 07:53:29.746189+00:00
93 66ReB5FjgA3H None Olfactory Receptor Neurons research IgG1 IgG2 ... None None notebook None None None None 1 2024-05-29 07:53:29.746342+00:00

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(10)
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
5 F2g3b8Xai9oV None Ige IgE Cajal–Retzius cells IgG4 IgG4 research. None None notebook None None None None 1 2024-05-29 07:53:29.729418+00:00
18 CyNYyGgPjtXn None Parafollicular Cell Natural killer cell IgA Ig... None None notebook None None None None 1 2024-05-29 07:53:29.731502+00:00
23 Ov4m4m0nCwT6 None Result Grid cells IgE research IgE classify. None None notebook None None None None 1 2024-05-29 07:53:29.732289+00:00
25 O6Gs0wM23YkQ None Igg3 IgG1 IgE research. None None notebook None None None None 1 2024-05-29 07:53:29.732604+00:00
30 hil7k7ZEf62R None Igd Adrenal glands cluster Veins IgG4 research... None None notebook None None None None 1 2024-05-29 07:53:29.733387+00:00
51 Cr1u3tN6V64p None Classify Cajal–Retzius cells IgG3 Cajal–Retziu... None None notebook None None None None 1 2024-05-29 07:53:29.736684+00:00
55 7AE7ck3Rzjgr None Intestine IgG4 IgA candidate research. None None notebook None None None None 1 2024-05-29 07:53:29.737308+00:00
83 dFLxqCpS9Gus None Investigate study classify research Natural ki... None None notebook None None None None 1 2024-05-29 07:53:29.744793+00:00
92 rLia6ZheHuOJ None Vestibule Of The Ear IgG4 efficiency IgY resea... None None notebook None None None None 1 2024-05-29 07:53:29.746189+00:00
93 66ReB5FjgA3H None Olfactory Receptor Neurons research IgG1 IgG2 ... None None notebook None None None None 1 2024-05-29 07:53:29.746342+00:00

startswith

ln.Transform.filter(name__startswith="Research").df()
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
231 7OjkmS8CkAnE None Research Vestibule of the ear IgG1 classify Pa... None None notebook None None None None 1 2024-05-29 07:53:29.772404+00:00
291 V5ilmwOmYq1d None Research IgY Adrenal glands IgD Enteric nervou... None None notebook None None None None 1 2024-05-29 07:53:29.781512+00:00
409 kFj8G5pvFPNh None Research Cortical visualize IgD Chromaffin cel... None None notebook None None None None 1 2024-05-29 07:53:29.804454+00:00
433 FKRBMBdis1CK None Research Natural killer cell IgE Veins IgG3 IgM. None None notebook None None None None 1 2024-05-29 07:53:29.808040+00:00
Hide code cell content
# clean up test instance
!lamin delete --force mydata
!rm -r mydata
Traceback (most recent call last):
  File "/opt/hostedtoolcache/Python/3.11.9/x64/bin/lamin", line 8, in <module>
    sys.exit(main())
             ^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/rich_click/rich_command.py", line 367, in __call__
    return super().__call__(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1157, in __call__
    return self.main(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/rich_click/rich_command.py", line 152, in main
    rv = self.invoke(ctx)
         ^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1688, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1434, in invoke
    return ctx.invoke(self.callback, **ctx.params)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 783, in invoke
    return __callback(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamin_cli/__main__.py", line 103, in delete
    return delete(instance, force=force)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamindb_setup/_delete.py", line 98, in delete
    n_objects = check_storage_is_empty(
                ^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamindb_setup/core/upath.py", line 798, in check_storage_is_empty
    raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage /home/runner/work/lamindb/lamindb/docs/mydata/.lamindb contains 3 objects ('_is_initialized' ignored) - delete them prior to deleting the instance
['/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/U1pFlRHEfSBjlvgXDpoL.parquet', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/_is_initialized', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/hSTxQZr1RHtYJ77NJCcg.jpg', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/jUrjt0RxYplfAZIzvkfz.fastq.gz']